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Abundance of witnesses Objectives

Objectives

Definition
Abundance of witnesses is used in decision problems to decide whether an
input x has a property L(x ∈ L) or not. The object representing the property
is called a witness.

Objective
Here we are trying to solve primality testing, which is the following decision
problem. For a given positive integer n, decide whether n is a prime of a
composite number. Our aim is to design an efficient, randomized algorithm
for primality testing.
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Abundance of witnesses Searching for a witness for Primal Testing

Prime Number
A positive integer n is a prime if and only if it does not have any factor (any
nontrivial divisor), i.e if and only if it is not dividable by any number from
{2, 3, ..., n− 1}
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Algorithm NAIV

input: A number n ∈ N− {0, 1, 2}.
I := 2
PRIME := TRUE
While I < n and PRIME = TRUE do

begin
if n mod I = 0 then PRIME := FALSE;
I := I + 1

end
if PRIME = TRUE then

output ”n is a prime”
else

output ”n is composite”
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It is important to note that instead of testing from {2, 3, ..., n− 1} for
divisibility of n, it suffices to consider the integers from {2, 3, ..., b

√
nc}

Time Complexity
After this improvement, the time complexity of the NAIV Algorithm is not

O(
√
n), it is 2

logn2
2 .
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Abundance of witnesses Searching for a witness for Primal Testing

Requirements of a good witness

1 A witness of the fact ”n is composite” has to offer a possibility of
efficiently proving this fact.

2 Every candidate for a witness must be efficiently checkable, whether or
not it is a witness.

3 The set of candidates must be specified in such a way that there is an
abundance of witnesses in a set of candidates.
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The Simplest Idea of Witness

Definition of a witness
let PRIM denote the set of all primes. Number a ∈ {2, 3, ..., n− 1} is a
witness of that fact n /∈ PRIM if and only if a divides n.

This definition fulfills the constraints (i) and (ii). For many integers n, the
constraint (iii) is fulfilled, too. But for numbers n = p.q where
p, q ∈ PRIM , there are only two witness of the fact n /∈ PRIM . Therefore
the probability of choosing them is 2

n−2 .
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Fermat’s Little Theorem

Theorem

For every prime p and every a ∈ {1, 2, ..., p− 1}, ap−1 mod p = 1
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The Second Definition of a Witness

Definition
A number a ∈ {1, 2, ..., n− 1} is a witness of the fact n /∈ PRIM if and
only if an−1 mod n 6= 1

Using Squaring method we can efficiently compute the value an−1 mod n, so
it satisfies constraints (i), (ii). But there are composite numbers n that

an−1 mod n = 1 ∀a ∈ {1, ..., n− 1}

For such numbers there is no witness of n /∈ PRIM . These numbers are
called Carmichael and there are infinitely many Carmichael numbers.

561 = 3.11.17, 1105 = 5.13.17, 1729 = 7.13.19
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Theorem A.2.27

Theorem A.2.27
It is well known that

n ∈ PRIM ⇔ (Zn − {0},�mod p)

is a group
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Theorem 6.2.1

Theorem 6.2.1
Let p > 2 be an odd integer, Then

p is a prime⇔ a
p−1
2 mod p ∈ {1, p− 1} ∀a ∈ Zp − {0}
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Theorem 6.2.1 - Proof (i)

p > 2 and it is odd, so
p = 2.p

′
+ 1

By Little Fermat’s Theorem we have: ap−1 ≡ 1(mod p)
Since

ap−1 = a2.p
′
= (ap

′
− 1).(ap

′
+ 1) + 1

Then
(ap
′
− 1).(ap

′
+ 1) ≡ 0(mod p)

p is prime, so

ap
′
− 1 ≡ 0(mod p) or ap

′
+ 1 ≡ 0(mod p) (6.4)

By inserting p
′
= (p−1)

2 in the (6.4), we obtain

a
(p−1)

2 ≡ 1(mod p) or a
(p−1)

2 ≡ −1 ≡ p− 1(mod p)
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Theorem 6.2.1 - Proof (ii)

Let p > 2 be an odd integer such that

c
(p−1)

2 mod p ∈ {1, p− 1} ∀c ∈ Zp − {0}

Prove by contradiction, Let p = a.b be a composite number, we have

a
(p−1)

2 mod p ∈ {1,−1} and b
(p−1)

2 mod p ∈ {1,−1}

Since �mod p is communicative, then

(a.b)
(p−1)

2 mod p = a
(p−1)

2 .b
(p−1)

2 mod p ∈ {1,−1} (6.5)

since a.b = p, we have

0 = p mod p = p
(p−1)

2 mod p = (a.b)
(p−1)

2

which contradicts (6.5)�
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Third Definition of a Witness

Definition of a witness
Let n be an odd integer, n ≥ 3. A number a ∈ {1, 2, ...n− 1} is a witness of
the fact ”n /∈ PRIM”, if and only if

a
(n−1)

2 mod n /∈ {1, n− 1} (6.6)

This kind of witness satisfies conditions (i) and (ii). Theorem 6.2.2 shows that
this definition assures the abundance of witnesses for at least every second
odd integer greater than 2.

Mohammad Heidari (Yazd University) Randomized Algorithms May 8, 2016 14 / 85



Abundance of witnesses Searching for a witness for Primal Testing

Third Definition of a Witness

Definition of a witness
Let n be an odd integer, n ≥ 3. A number a ∈ {1, 2, ...n− 1} is a witness of
the fact ”n /∈ PRIM”, if and only if

a
(n−1)

2 mod n /∈ {1, n− 1} (6.6)

This kind of witness satisfies conditions (i) and (ii). Theorem 6.2.2 shows that
this definition assures the abundance of witnesses for at least every second
odd integer greater than 2.

Mohammad Heidari (Yazd University) Randomized Algorithms May 8, 2016 14 / 85



Abundance of witnesses Searching for a witness for Primal Testing

Third Definition of a Witness

Definition of a witness
Let n be an odd integer, n ≥ 3. A number a ∈ {1, 2, ...n− 1} is a witness of
the fact ”n /∈ PRIM”, if and only if

a
(n−1)

2 mod n /∈ {1, n− 1} (6.6)

This kind of witness satisfies conditions (i) and (ii). Theorem 6.2.2 shows that
this definition assures the abundance of witnesses for at least every second
odd integer greater than 2.

Mohammad Heidari (Yazd University) Randomized Algorithms May 8, 2016 14 / 85



Abundance of witnesses Searching for a witness for Primal Testing

Theorem 6.2.2

Go Back

Theorem 6.2.2

For every positive integer n with an odd (n−1)
2 (i.e, for n ≡ 3(mod 4)),

(i) if n is a prime, then

a
n−1
2 mod n ∈ {1, n− 1} ∀a ∈ {1, ..., n− 1}

(ii) if n is composite, then

a
n−1
2 mod n /∈ {1, n− 1}

for at least half of the elements a from {1, 2, ..., n− 1}
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Theorem 6.2.2 - Proof (i)

The assertion (i) has already been proved in Theorem 6.2.1. Hence, it remains
to show (ii).
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Theorem 6.2.2 - Proof (ii) ...

Let

WITNESS = {a ∈ {1, 2, ..., n− 1}|a
(n−1)

2 mod n /∈ {1, n− 1}}

be the set of all witnesses of n /∈ PRIM , and let

EULER = {a ∈ {1, 2, ..., n− 1}|a
(n−1)

2 mod n ∈ {1, n− 1}}

be the complementary set of non-witnesses.
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Theorem 6.2.2 - Proof (ii) ...
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Theorem 6.2.2 - Proof (ii) ...

Assume b ∈WITNESS for which there exists b−1 in the group (Z∗n,�mod n).

Define
hb(a) = a.b mod n

Next, we will show that hb is an injective mapping from EULER to
WITNESS.
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Theorem 6.2.2 - Proof (ii) ...

Claim: ∀a ∈ EULER, the hb(a) = a.b /∈ EULER so is in WITNESS
Proof.

(a.b)
(n−1)

2 mod n =
(
a

(n−1)
2 mod n

)
.
(
b
(n−1)

2 mod n
)

= ±b
(n−1)

2 mod n /∈ {1, n− 1}

(Since a
(n−1)

2 mod n ∈ {1, n− 1} and b ∈WITNESS)

Thus, hb is a mapping from EULER to WITNESS
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Theorem 6.2.2 - Proof (ii) ...

Claim: hb is injective:

∀a1, a2 ∈ EULER, a1 6= a2 ⇒ hb(a1) 6= hb(a2)

Proof. Assume hb(a1) = hb(a2), then

a1.b ≡ a2.b (mod n) (6.7)

Multiplying the congruence (6.7) from the right by b−1, we obtain

a1 = a1.b.b
−1 mod n = a2.b.b

−1 mod n = a2
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Theorem 6.2.2 - Proof (ii) ...

Chinese Remainder Theorem
Let r, s be positive integers which are relatively prime and let a and b be any
two integers. Then there is an integer N such that

N ≡ a(mod r)

and
N ≡ b(mod s)
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Theorem 6.2.2 - Proof (ii) ...

To complete the proof we have still to show that there exists an element b ∈
WITNESS ∩ Z∗n.
Let n = p.q for two nontrivial factors p and q with GCD(p, q) = 1. Since it
is clearer to search for b in Zp × Zq instead of searching in Zn, we apply the
Chinese Remainder Theorem.

∀a ∈ Zn, the pair
(a mod p, a mod q)

is the representation of a in Zp × Zq.
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Theorem 6.2.2 - Proof (ii) ...

If a ∈ EULER then

a
(n−1)

2 mod p.q ∈ {1, n− 1}

which implies for a k ∈ N either

a
(n−1)

2 = k.p.q + 1

or
a

(n−1)
2 = k.p.q + n− 1
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Theorem 6.2.2 - Proof (ii) ...

A direct consequence of it is either

a
(n−1)

2 mod p = a
(n−1)

2 mod q = 1

or

a
(n−1)

2 mod p = (n− 1) mod p = (p.q − 1) mod p = p− 1 and

a
(n−1)

2 mod q = (n− 1) mod q = (p.q − 1) mod q = q − 1

Hence either (1, 1) or (p− 1, q − 1) = (−1,−1) is the representation of

a
(n−1)

2 mod n in Zp × Zq for every a ∈ EULER.
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Theorem 6.2.2 - Proof (ii) ...

Therefore we choose
(1, q − 1) = (1,−1)

as the representation of b in Zp × Zq.

We need to show that b has the required properties.
The representation of b

(n−1)
2 mod n in Zp × Zq is:(

b
(n−1)

2 mod p, b
(n−1)

2 mod q
)
=
(
1

(n−1)
2 mod p, (−1)

(n−1)
2 mod q

)
= (1,−1)

(because n−1
2 is odd).

Hence, b is not a Eulerian number, and so b ∈WITNESS
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Theorem 6.2.2 - Proof (ii)

To complete the proof, we need to show b−1 = b. Since (1, 1) is the natural
element with respect to the multiplication in Zp × Zq,

(1, q − 1)�p,q (1, q − 1) = (1.1 mod p, (q − 1).(q − 1) mod q) = (1, 1)

implies that b is inverse to itself. �
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SSSA (Simplified Solovay-Strassen Algorithm)

input: An odd integer n with n ≡ 3(mod 4)
Step 1: Choose uniformly an a ∈ {1, 2, ...n− 1} at random.

Step 2: Compute A := a
(n−1)

2 mod n.
Step 3:

if A ∈ {1,−1} then
output ”n ∈ PRIM” {reject}

else
output ”n /∈ PRIM” {accept}
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Theorem 6.2.6

Theorem 6.2.6
SSSA is a polynomial-time 1MC algorithm for the recognition of composite
numbers n with n mod 4 = 3.

Mohammad Heidari (Yazd University) Randomized Algorithms May 8, 2016 29 / 85



Abundance of witnesses Searching for a witness for Primal Testing

Theorem 6.2.6 - Proof

The value of A can be efficiently computed by repeated squaring. The fact
that SSSA is a 1MC algorithm is a direct consequence of Theorem 6.2.2. If p
is a prime, then (i) of Theorem 6.2.2 assures that there is no witness of
p /∈ PRIM , and so the algorithm SSSA answers ”n ∈ PRIM” with
certainly.

If p is composite, then (ii) of Theorem 6.2.2 assures that

Prob(SSSA outputs ”n /∈ PRIM”) ≥ 1

2
�
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Objective

We have a kind of witness, that provides an efficient randomized algorithm for
primality testing for all positive integers n with n ≡ 3( mod 4). This section
aims to extend this kind of witness in a way that results in a randomized
primality testing for all odd integers.

Mohammad Heidari (Yazd University) Randomized Algorithms May 8, 2016 31 / 85



Abundance of witnesses Solovay-Strassen Algorithm for Primality Testing

An Extension to Definition (6.6)

An a ∈ {1, 2, ..., n− 1} with GCD(a, n) 6= 1 is also a witness of the fact
n /∈ PRIM

GCD(a, n) can be efficiently computed by the Euclidean algorithm

Extension of the definition (6.6) of witnesses

A number a ∈ {1, 2, ..., n− 1} is a witness of the fact n /∈ PRIM for an odd
positive integer n if

(i) GCD(a, n) > 1, or (6.9)
(ii)GCD(a, n) = 1 and a

n−1
2 mod n /∈ {1, n− 1}

Unfortunately, (6.9) does not guarantee the abundance of witnesses for
Carmichael numbers, and so we cannot use this kind of witness for the design
of a randomized algorithm for primality testing for all odd, positive integers.
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Quadratic Residue Modulo

Definition
An integer q is called a quadratic residue modulo n(qRn) if it is congruent to
a perfect square modulo n; i.e., if there exists an integer x such that:

x2 ≡ q(mod n)
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Legendre Symbol

Definition 6.3.10: Legendre Symbol

For any prime p > 2 and any positive integer a with GCD(a, p) = 1 the
Legendre symbol for a and p is:

Leg
[a
p

]
=

{
1 if a is a quadratic residue modulo p(aRp),

−1 if a is a quadratic nonresidue modulo p(aNp).
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Lemma 6.3.11

The following assertion is a direct consequence of the Euclidean Criterion
(Theorem 5.4.14).

Lemma
For every prime p > 2 and every positive integer a with GCD(a, p) = 1

Leg
[a
p

]
= a

p−1
2 mod p
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Jacobi Symbol

Definition 6.3.12: Jacobi Symbol
Let

n = pk11 .pk22 .....pkll

be the factorization of an odd integer n ≥ 3, where p1 < p2 < ... < pl are
primes and k1, k2, ..., kl are positive integers for a positive integer l.
For all positive integers a with GCD(a, n) = 1, the Jacobi symbol of a and n
is

Jac
[a
n

]
=

l∏
i=1

(
Leg
[ a
pi

])ki
=

l∏
i=1

(
a

pi−1

2 mod pi

)ki
.
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Observation

Observation 6.3.13
For all positive integers a and n satisfying the assumptions of Definition
6.3.10

Jac
[a
n

]
∈ {1,−1}.
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Lemma 6.3.14

Let n be an odd integer greater than 3, and let a, b be natural numbers with
GCD(a, n) = GCD(b, n) = 1. Then

1 Jac
[
a.b
n

]
= Jac

[
a
n

]
.Jac
[
b
n

]
2 Jac

[
a
n

]
= Jac

[
b
n

]
∀a, b with a ≡ b( mod n)

3 Jac
[
a
n

]
= (−1)

a−1
2

.n−1
2 .Jac

[
n
a

]
, for all odd a

4 Jac
[
1
n

]
= 1 and Jac

[
n−1
n

]
= (−1)

n−1
n

5 Jac
[
2
n

]
= −1 for all n with n mod 8 ∈ {3, 5}, and

Jac
[
2
n

]
= 1 for all n with n mod 8 ∈ {1, 7}
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Lemma 6.3.14 - Proof (i)

Let n = pk11 .pk22 .....pkll :

Jac
[a.b
n

]
=

l∏
i=1

(
(a.b)

pi−1

2 mod pi

)ki
=

l∏
i=1

((
a

pi−1

2 mod pi

)
.
(
b
pi−1

2 mod pi

))ki
=

l∏
i=1

(
a

pi−1

2 mod pi

)ki
.

l∏
i=1

(
b
pi−1

2 mod pi

)ki
= Jac

[a
n

]
.Jac
[ b
n

]
This completes the proof of (i).
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Lemma 6.3.14 - Proof (ii)

Following the definition of Jacobi symbols, it is sufficient to show

Leg
[a
p

]
= Leg

[ b
p

]
∀ prime p and all a, b with GCD(a, p) = GCD(b, p) = 1 and a ≡ b( mod p).
For appropriate r, s, z ∈ N, z < p we have:

a = p.r + z and b = p.s+ z (6.10)

Then
Jac
[a
p

]
= a

p−1
2 mod p = (p.r + z)

p−1
2 mod p

=

(p−1)/2∑
i=0

(
(p− 1)/2

i

)
.(p.r)

p−1
2
−i.zi mod p

= z(p−1)/2 mod p {All other members of the sum are divisible by pr}

Analogously: Jac
[
b
p

]
= z(p−1)/2 mod p⇒ Leg

[
a
p

]
= Leg

[
b
p

]
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Algorithm JACOBI
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New Definition of Witnesses of Compositeness

Definition
An a with

Jac
[a
n

]
6= a(n−1)/2 mod n

witnesses the fact ”n /∈ PRIM”
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Jac-witness

Definition 6.3.16
Let n be an odd integer, n ≥ 3. A number a ∈ {1, 2, ..., n− 1} is called
Jac-witness of that fact ”n /∈ PRIM” if

GCD(a, n) 6= 1, or

Jac
[
a
n

]
6= a(n−1)/2 mod n
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Algebra

Algebra

Algebra is a pair (S, F ), where

S is a set of elements.

F is a set of mappings that map arguments or tuples of arguments from
S to S. More precisely, F is a set of operations on S, and an operation
f ∈ F is a mapping from Sm to S for nonnegative integer m.
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Group

A group G is a finite or infinite set of elements together with a binary
operation that together satisfy the four fundamental properties of closure,
associativity, the identity property, and the inverse property.

1 Closure: If A and B are two elements in G, then the product AB is also
in G.

2 Associativity: The defined multiplication is associative, i.e., for all
A,B,C ∈ G, (AB)C = A(BC).

3 Identity: There is an identity element I such that IA = AI = A for
every element A ∈ G.

4 Inverse: There must be an inverse (a.k.a. reciprocal) of each element.
Therefore, for each element A of G, the set contains an element
B = A−1 such that AA−1 = A−1A = I .
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Subgroup

Definition
Let (A, ∗) be a group. An algebra (H, ∗) is a subgroup of (A, ∗) if

H ⊆ A, and

(H, ∗) is a group. For instance, (Z,+) is a subgroup of (Q,+).
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Right and Left Coset

Definition
Let (H, ◦) be a subgroup of (A, ◦). For every b ∈ A, we define the sets

H ◦ b = {h ◦ b|h ∈ H} and b ◦H = {b ◦ h|h ∈ H}

as right coset and left coset of H in (A, ◦) respectively.
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Index of H in (A, ◦)

Definition
Let (H, ◦) be a subgroup of a group (A, ◦). We define index of H in (A, ◦) by

IndexH(A) = |{H ◦ b|b ∈ A}|

i.e, as the number of different right cosets of H in (A, ◦).
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Lagrange’s Theorem

Theorem
For every subgroup (H, ◦) of a finite group (A, ◦),

|A| = IndexH(A).|H|

i.e, |H| divides |A|.
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Corollary A.2.49

Go Back

Corollary

Let (H, ◦) be a proper algebra if a finite group (A, ◦). Then,

|H| ≤ |A|/2
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Cyclic Group

Definition
Let (S, ∗) be a group with the neutral element e. For every a ∈ S and every
j ∈ Z, we define the j-th power of a as follows:

a0 = e, a1 = a, a−1 = i(a),

∀j ≥ 1, aj+1 = a ∗ aj

∀j ∈ Z+, a−j = (i(a))j

An element g of S is called a generator of the group (S, ∗) if

S = {gi|i ∈ Z}
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Order of a

Definition
Let (A, ∗) be a group with neutral element 1. For each a ∈ A, the order of a
is defined by

order(a) = min{r ∈ N− {0} | ar = 1}

if there exists at least one r with ar = 1.

if ∀i ∈ N− {0}, ai 6= 1, then we set order(a) =∞
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Theorem 6.3.17

Go Back

Theorem
For every odd integer n, n ≥ 3, the following holds:

(a)If n is a prime, then

Jac
[a
n

]
= Leg

[a
n

]
= a

n−1
2 mod n ∀a ∈ {1, 2, ..., n− 1}

(b)If n is composite, then

Jac
[a
n

]
6= a

n−1
2 mod n

for at least half the elements a ∈ {1, 2, ..., n− 1} with the property
GCD(a, n) = 1 (i.e, a ∈ Z∗n)

Remember: Z∗n = {a ∈ Zn − {0}|GCD(a, n) = 1}
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Theorem 6.3.17 - Proof (a)

The claim (a) is a direct consequence of the definition of Jacobi symbols and
the Eulerian Criterion.
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Theorem 6.3.17 - Proof (b) ...

witness candidates = {1, 2, ..., n− 1} = Zn − {0}

Jac-witness of n /∈PRIM according to definition 6.3.16(i) are all elements
from {1, 2, ..., n− 1} − Z∗n.

We denote the non-Jac-witness by:

Witn = {a ∈ Z∗n| Jac
[a
n

]
= a

n−1
2 mod n},

then
Z∗n −Witn

is the set of Jac-witness of n /∈PRIM with respect to definition 6.3.16 (ii).
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Theorem 6.3.17 - Proof (b) ...

Our aim is to show that

|Witn| ≤ |Z∗n|/2, (6.11)

so that
|{1, 2, ..., n− 1} −Witn| ≥ |Witn|

We need to show that

(Witn,�mod n) is a proper subgroup of (Z∗n,� mod n)

i.e, we need to look for an element a ∈ Z∗n −Witn.
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Theorem 6.3.17 - Proof (b) ...

Theorem A.2.40
Let (A,�) be a finite group. Every algebra (H,�) with H ⊆ A is a subgroup
of (A,�)
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Theorem 6.3.17 - Proof (b) ...

First we show that (Witn,� mod n) is a group.

Following Corollary A.2.49 it is sufficient to show that Witn is closed
according to � mod n:

Let a, b ∈Witn, From Lemma 6.3.14 (i),

Jac
[a.b
n

]
= Jac

[a
n

]
. Jac

[ b
n

]
=
(
a

n−1
2 mod n

)
.
(
b
n−1
2 mod n

)
{Since a, b ∈Witn}

= (a.b)
n−1
2 mod n

So a.b ∈Witn therefore Witn is closed according to � mod n.
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Theorem 6.3.17 - Proof (b) ...

Now we show that Witn is a proper subset of Z∗n, (a ∈ Z∗n −Witn). Let

n = pi11 .p
i2
2 .....p

ik
k

then we set
q = pi11 and m = pi22 .....p

ik
k

in order to search for an a ∈ Z∗n −Witn in Zq × Zm instead of searching
directly in Zn.
Let g be the generator of the cyclic group (Z∗q ,� mod q). We make the choice
of a by the following recurrences:

a ≡ g(mod q) and a ≡ 1(mod m)

Hence we choose a as (g, 1) in Zq × Zm
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Theorem 6.3.17 - Proof (b) ...

First, we show that a ∈ Z∗n, (i.e, GCD(a, n) = 1). So we have to show

none of the primes p1, p2, ..., pk divides the number a. (6.13)

The proof is by contradiction. If p1 | a, then the equality g = a mod pi11
contradicts the assumption that g is a generator of Z∗q , So p1 - a.

Hint: The equality g = a mod pi11 follows from a ≡ g(mod q)

Mohammad Heidari (Yazd University) Randomized Algorithms May 8, 2016 61 / 85



Abundance of witnesses Solovay-Strassen Algorithm for Primality Testing

Theorem 6.3.17 - Proof (b) ...

If, for an r ∈ {2, ..., k}, pr | a, then a = pr.b, b ∈ N. From a ≡ 1( mod m)
we have:

a = m.x+ 1, x ∈ N

Hence
a = pr.b = m.x+ 1 = pr.(m/pr).x+ 1

which implies pr | 1, Since pr > 1 so it is a contradiction. Thus a ∈ Z∗n.

Hint: if p | x, p | y and x = y + z then p | z

Proof:
x = p.k, y = p.k

′
, x = y + z

then
p.k = p.k

′
+ z ⇒ z = p(k − k

′
)⇒ p | z
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Theorem 6.3.17 - Proof (b) ...

Finally, we have to prove that

a /∈Witn

To do so, we distinguish two possibilities: i1 = 1 and i1 ≥ 2.
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Theorem 6.3.17 - Proof (b) ...

(1) let i1 = 1

We have to prove Jac
[
a
n

]
6= a

n−1
2 mod n. Remember that

n = p1.m,m > 1 and GCD(p1,m) = 1( Since if p - a then ∀b ∈ N, p - ab)

Jac
[a
n

]
=

k∏
j=1

(
Jac
[ a
pi

])ij
= Jac

[ a
p1

]
.

k∏
j=2

(
Jac
[ a
pj

])ij
= Jac

[ a
p1

]
.

k∏
j=2

(
Jac
[ 1
pj

])ij
= Jac

[ a
p1

]
= Jac

[ g
p1

]
= Leg

[ g
p1

]
= −1

Hence Jac
[
a
n

]
= −1
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Theorem 6.3.17 - Proof (b) ...

Since a ≡ 1( mod m), we obtain

a
n−1
2 mod m = (a mod m)

n−1
2 mod m

= 1
n−1
n

mod m

= 1 (6.14)

Now, the equality a
n−1
2 mod n = −1 for n = q.m cannot hold because

a
n−1
2 mod n = −1 implies:

a
n−1
2 mod m = −1(= m− 1 in Z∗m)

which contradicts (6.14). Hence:

−1 = Jac
[
a
n

]
6= a

n−1
2 mod n⇒ a ∈ Z∗n −Witn
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Theorem 6.3.17 - Proof (b) ...

(2) Let i1 ≥ 2.
We prove a /∈Witn in an indirect way.

a ∈Witn ⇒ a
n−1
2 mod n = Jac

[a
n

]
∈ {1,−1}

and so
an−1 mod n = 1

Since n = q.m, we also have

an−1 mod q = 1

Since g = a mod q we obtain

1 = an−1 mod q = (a mod q)n−1 mod q = gn−1 mod q. (6.15)
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Theorem 6.3.17 - Proof (b) ...

g is a generator of cyclic group (Z∗q ,� mod q), so the order of g is |Z∗q |. From
(6.15) we have that:

|Z∗q | divides n− 1 (6.16)

since q = pi11 for an i1 ≥ 2, and

Z∗q = {x ∈ Zq|GCD(x, 1) = 1} = {x ∈ Zq|p1 - x}

and the number of elements of Zq that are a multiple of p1 is exactly |Zq|/p1,
one obtains

|Z∗q | = |Zq| − |Zq|/p1 = pi11 − pi1−11 = p1.(p
i1−1
1 − pi1−21 )

Hence
p1 divides |Z∗q | (6.17)
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Theorem 6.3.17 - Proof (b)

From (6.16) and (6.17) together imply that

p1 divides n− 1 (6.18)

Since n = pi11 , we have obtained

p1 divides n and p1 divides n− 1

Since @ prime p, such that p | n and p | n− 1, out assumption a ∈Witn
cannot hold, and we obtain

a /∈Witn�
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Algorithm Solovay-Strassen
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Theorem 6.3.18

Theorem
The Solovay-Strassen algorithm is a polynomial-time one-sided-error Monte
Carlo algorithm for the recognition of composite numbers.
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Theorem 6.3.18 - Proof ...
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Theorem 6.3.18 - Proof

If n ∈ PRIM, then by Theorem 6.3.17 (a), the algorithm outputs the answer
”n ∈ PRIM” with certainly.

If n is composite, Theorem 6.3.17 (b) assures that at least half the elements
of {1, 2, ..., n− 1} are Jac-witnesses of ”n /∈ PRIM”. Therefore, the Solovay-
Strassen algorithm gives the right answer ”n /∈ PRIM” with probability at
least 1/2.�
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Abundance of witnesses Generation of Random Primes

Objectives

Problem
For a given positive integer l, generate a random prime of the binary length l.

The number of primes of the length l of order hundreds, is larger that the num-
ber of protons in the known universe. Clearly, one cannot solve this task by
generating all primes of length l and than choosing one of them at random.
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Theorem A.2.9. Prime Number Theorem

Go Back

Prime Number Theorem

lim
n→∞

PRIM(n)

n/ln n
= 1

In other words, the Prime Number Theorem says that the density

(PRIM(n))/n

of the primes among the first n positive integers tends to

1/ln n

as n increases.
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Abundance of witnesses Generation of Random Primes

The Strategy

Strategy
The strategy used simply generates a random integer of length l and then
applies a randomized primality test in order to check whether or not the
generated number is a prime.

This approach works due to the Primality Theorem (Theorem A.2.9), that
assures an abundance of primes among natural numbers.

For a randomly chosen number n, the probability that n is a prime is
approximately 1/ln n.
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Abundance of witnesses Generation of Random Primes

Theorem 6.4.19

Theorem
The algorithm PRIMEGEN(l, l) is a bounded-error algorithm for generating
primes that works in time polynomial in l.
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Theorem 6.4.19 - Proof ...

Unwanted events include:
1 If none of the 2.l2 randomly generated numbers is a prime, and for every

one of these generated numbers, the Solovay-Strassen primality test
proves in l runs that the given number is composite.

2 PRIMEGEN(l, l) outputs a composite number n as a prime (the
probability of a wrong output, error probability).
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Theorem 6.4.19 - Proof ...

Unwanted Event 1:
By Theorem A.2.9 since the probability, that a random number of length l is
a prime, is at least

1

ln n
>

1

2.l

the probability of generating no prime in one attempt is at most

1− 1

2.l
. (6.19)

Let
wl ≥ 1− 1

2l

be the probability, that l runs of the Solovay-Strassen primality test succeed in
proving ”n /∈ PRIM” for a given, composite n of length l.
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Theorem 6.4.19 - Proof ...

Hence we obtain

Prob(PRIMGEN(l, l) = ”I was unable to find a prime”)

<
((

1− 1

2.l

)
.wl

)2.l2
<
(
1− 1

2.l

)2.l2
=
[(

1− 1

2.l

)2.l]l
<
(1
e

)l
= e−l

e−l tends to 0 with growing l. For l ≥ 2, e−l <
1

4
and for

l ≥ 100, e−l < 10−40

Mohammad Heidari (Yazd University) Randomized Algorithms May 8, 2016 81 / 85



Abundance of witnesses Generation of Random Primes

Theorem 6.4.19 - Proof ...

Unwanted Event 2:
The algorithm PRIMEGEN(l, l) produces a composite number n only if

(i) all numbers generated before n were composite, and
(ii) n is composite, but PRIMEGEN(l, l) does not succeed in proving n’s
compositeness in l runs of the Solovay-Strassen algorithm.

Let pi be the probability that the wrong answer n is the i-th generated
number, for i ∈ {1, 2, ..., 2.l2}.

The (6.19) implies

p1 ≤
(
1− 1

2.l

)
.
1

2l
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Theorem 6.4.19 - Proof ...

For all i = 2, 3, ..., 2.l2,

pi ≤
[(

1− 1

2.l

)
.wl

]i−1
.
(
1− 1

2.l

)
.
1

2l

where
[(

1− 1

2.l

)
.wl

]i−1
is an upper bound on the probability that the first i1

generated numbers are composite and that this fact was successfully
recognized.
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Theorem 6.4.19 - Proof ...

Thus we obtain

ErrorPRIMEGEN(l,l)(l) ≤ p1 +

2.l2∑
j=2

pj

≤
(
1− 1

2.l

)
.
1

2l

+
2.l2−1∑
i=1

[(
1− 1

2.l

)
.wl

]i
.
(
1− 1

2.l

)
.
1

2l

≤
(
1− 1

2.l

)
.
1

2l
.

(
2.l2−1∑
i=1

(
1− 1

2.l

)i
+ 1

)

≤
(
1− 1

2.l

)
.
1

2l
.2.l2

≤ l2

2l−1
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Theorem 6.4.19 - Proof

Clearly the value l2.2−(l−1) tends to 0 with growing l, and

ErrorPRIMEGEN(5,5)(5) ≤
1

5
.

For l ≥ 100,

ErrorPRIMEGEN(l,l)(l) ≤ l2.2−(l−1) ≤ 1.58.10
−26�

In order to increase the success probability of PRIMEGEN(l, k), we have
probably chosen a too large k, that essentially increases the time complexity.
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